For Immediate Release

Contact:
Gillian Shasby
Director of Publications–Operations, Journal of Neurosurgery Publishing Group
(434) 924-5503 | gshasby@thejns.org
or
John A. Iwanski
Director of Member and Public Outreach
(847) 378-0517 | jai@aans.org

Children's Bicycle Helmets Shown to be Effective in Impact and Crush Tests

CHARLOTTESVILLE, Va. (Oct. 2, 2012) — A favorite physical activity engaged in by Americans is bicycling, and children are perhaps its most ardent participants; it has been estimated that 70 percent of children between the ages of five and 14 ride bicycles. Bicycling is not without its dangers, however, and one of the worst is the risk of head and brain injury during a crash. According to the U.S. Centers for Disease Control, head injury is the most common cause of death and serious disability from bicycle crashes. The best protection offered to mitigate this injury is the bicycle helmet. However, few bicyclists wear helmets regularly, and children are less inclined to wear helmets than adults: national estimates of helmet use among children range from only 15 to 25 percent. To determine just how effective bike helmets can be, neurosurgeon Tobias Mattei, MD, and his research team at the Illinois Neurological Institute and Bradley University tested how well helmets withstood forces of impact and crush tests when covering human cadaver skulls. They found that wearing a helmet can reduce the acceleration experienced by the skull during an impact by up to 87 percent, and can aid the skull in resisting forces up to 470 pounds in a crush accident. Full details on the results can be found in “Performance analysis of the protective effects of bicycle helmets during impact and crush tests in pediatric skull models. Laboratory investigation,” by Mattei and colleagues, published online, ahead of print, in the Journal of Neurosurgery: Pediatrics (http://thejns.org/doi/full/10.3171/2012.8.PEDS12116).

The researchers tested impact and crush injuries sustained by cadaver skulls alone, as well as skulls outfitted with bicycle helmets. The investigators chose human cadaver skulls for these tests because of the skulls’ anatomical equivalency with the heads of living persons. The skulls were filled with BBs and resin cement to provide a uniform weight of four pounds. The investigators used an apparatus that could test both impact and compression injuries.

To test the effect of an impact injury, each skull was outfitted with a standard children’s bicycle helmet and suspended upside down on a carriage of the test apparatus. The skull and helmet were released in free-fall from heights ranging from 6 to 48 inches, landing on a flat steel impact anvil. Unprotected skulls also were tested in falls from 6- and 9-inch heights. Helmet use was found to reduce impact acceleration up to 87 percent at a drop height of 6 inches (and more than 76 percent at a drop height of 9 inches). Translating these data into real-life effects, the authors state that wearing a helmet can reduce the force of a head impact during an accident occurring at 30 miles per hour to the force of a head impact occurring at 7 miles per hour.

Compression injuries in bicycle accidents do not occur as often as impact injuries, but they can be devastating. To test the ability of helmets to protect the skull during a compression accident, the researchers used a pneumatic air cylinder. Together the skull and helmet were placed on their sides on a platform underneath the pneumatic cylinder, and the cylinder was set at various loads of compression to identify the maximum load that could be sustained without damaging the skull. The test was repeated using the skull without a helmet and again using the helmet alone. The helmeted skull was able to withstand a 470-pound force; the helmet alone displayed initial cracking at 100 to 200 pounds of force. Disastrous consequences occurred when the unprotected skull was subjected to a high compression load.

Based on the test results, Dr. Mattei, the lead author of this study, offers this advice to parents sending their children out to play on bicycles: “Parents must be aware that it is their responsibility to provide and assure that all available safety measures are taken when allowing their children to participate in any kind of social activity or sport. Bicycling is not
different. Parents should teach by example, and their children will easily learn what measures must be taken to protect themselves. The objective of this benchmark investigation was to provide scientific validation for an educational ‘Children’s Bicycle Helmet Campaign’ by providing precise and quantifiable measurements of the protection afforded by bicycle helmets. The results we obtained in our study provide strong scientific evidence for the sometimes-neglected common-sense belief that bicycle helmets significantly increase children’s safety. As neurosurgeons, we are sometimes able to lessen the deleterious life-lasting effects of traumatic brain injuries that may occur in bicycle accidents. However, there is no doubt that the best strategy is still prevention, which in this case may be accomplished cheaply and simply by regular helmet use.”

Disclosure: The authors report no potential conflict of interest because no funding was received from any helmet manufacturer and no author has a business or professional affiliation with any entity related to the bicycle industry.

Two other research articles on sports-related brain injury also were published online ahead of print in JNSPG journals:

For additional information, please contact:

Ms. Gillian Shasby, Director of Publications–Operations
Journal of Neurosurgery Publishing Group
One Morton Drive, Suite 200
Charlottesville, VA 22903
E-mail: gshasby@thejns.org
Telephone (434) 924-5503
Fax (434) 924-5782

The Journal of Neurosurgery: Pediatrics is a monthly peer-reviewed journal focused on diseases and disorders of the central nervous system and spine in children. This journal contains a variety of articles, including descriptions of preclinical and clinical research as well as case reports and technical notes. The Journal of Neurosurgery: Pediatrics is one of four monthly journals published by the JNS Publishing Group, the scholarly journal division of the American Association of Neurological Surgeons (www.AANS.org), an association dedicated to advancing the specialty of neurological surgery in order to promote the highest quality of patient care. The Journal of Neurosurgery: Pediatrics appears in print and on the Internet at www.thejns.org.

Founded in 1931 as the Harvey Cushing Society, the American Association of Neurological Surgeons (AANS) is a scientific and educational association with nearly 8,200 members worldwide. The AANS is dedicated to advancing the specialty of neurological surgery in order to provide the highest quality of neurosurgical care to the public. All active members of the AANS are certified by the American Board of Neurological Surgery, the Royal College of Physicians and Surgeons (Neurosurgery) of Canada or the Mexican Council of Neurological Surgery, AC. Neurological surgery is the medical specialty concerned with the prevention, diagnosis, treatment and rehabilitation of disorders that affect the entire nervous system including the spinal column, spinal cord, brain and peripheral nerves. For more information, visit www.AANS.org.

###